
		  E-1

A P P E N D I X  E

Visual C++ component extensions

Visual C++ component extensions (C++/CX) constitute the set of language extensions that enable 
you to directly interface Windows Runtime and native C/C++ code. As I showed you in Chapter 8, 

“Image processing,” you can build such C++/CX components for complex operations (like image pro-
cessing) and to reuse existing code and libraries. Typically, you create C++/CX component as a Windows 
Runtime component or a DLL, which is then referenced by the UWP project. In that project, you invoke 
methods from the C++/CX component in exactly the same manner as you would with any other UWP 
assembly. In this way, C++/CX provides an access to native programming, while giving you an opportu-
nity to use modern elements of C++ programming and straightforward integration with higher layers 
of your UWP solution.

You can also write the entire UWP app in C++/CX. This can be particularly useful when you prefer 
C++ over C# or need improved speed performance since C++/CX app compiles to native code regard-
less the build configuration. However, in most cases you will most likely prepare a C++/CX wrapper to 
interface legacy code, and then write the UI layer and accompanied logic with C#.

In this appendix I show you how to start with building a UWP app with C++/CX. In particular, I tell 
you how to implement an app that will emulate periodic sensor readings in the background. Such back-
ground operation was one of the most common functionalities I dealt with throughout this book. This 
app will illustrate the most important elements of C++/CX from the IoT perspective. Further details and 
the full C++/CX language reference can be found in the following guide: https://bit.ly/cpp_cx. 

User interface and event handling

I attached the source code supporting this discussion to the companion code under the Appendix E 
subfolder. I created one project, SenseHat.Sensors.CppCx, using the Blank App (Universal Windows) 
Visual C++ project template. Then I built a UI consisting of two buttons and two labels (see Figure E-1). 
Again, buttons are used to start and stop background operations. One label displays the constant 
string Temperature, and the other shows the emulated sensor reading. 

FIGURE E-1  UI of SenseHat.Sensors.CppCx.



E-2		  APPENDIX E  Visual C++ component extensions

UI declaration uses the same XAML syntax as the C# app. (See the companion code at Appendix E/ 
MainPage.xaml.) However, the associated code-behind is composed of two files: MainPage.xaml.h 
and MainPage.xaml.cpp. The first one contains the MainPage class declaration and the other stores its 
definition. 

As shown in Listing E-1, I extend the MainPage declaration by one public read-only property (View-
Model of type SensorsViewModel^), two private fields (sensorsViewModel and telemetry), and also 
three methods (OnDataReady, ButtonStartSensorReading_Click, and ButtonStopSensorReading_
Click). Analyzing these declarations, the most conspicuous part of the syntax is ^ (hat). This declarator 
acts as a smart pointer. It instructs the runtime to automatically manage the lifetime of the object, so 
corresponding memory will be released when the reference counter goes to zero. Additionally, hats 
provide automatic type conversion. Therefore, types with hats are typically referred to as managed 
types.

LISTING E-1  MainPage class declaration

public ref class MainPage sealed 
{ 
public: 
    MainPage(); 
 
    property SensorsViewModel^ ViewModel 
    { 
        SensorsViewModel^ get() { return sensorsViewModel; } 
    } 
 
private: 
    SensorsViewModel^ sensorsViewModel = ref new SensorsViewModel(); 
    Telemetry^ telemetry = ref new Telemetry(); 
 
    void OnDataReady(Object^ sender, TelemetryEventArgs^ e); 
    void ButtonStartSensorReading_Click(Object^ sender, RoutedEventArgs^ e); 
    void ButtonStopSensorReading_Click(Object^ sender, RoutedEventArgs^ e); 
};

In MainPage, most types are declared with hats because they are related to the UWP API. However, 
as you will shortly see, in C++/CX you can also use standard pointers, declared with *. You construct 
managed types with the ref new keyword, while for unmanaged types you typically use the new key-
word. To access members of the managed type, you use the member-access operator, ->.

Definitions of the button event handlers appear in Listing E-2. They start and stop telemetry and 
update the IsTelemetryActive property of ViewModel. The latter is bound to the UI to control the 
state of buttons and display the emulated temperature. 

As shown in Listing E-3, the temperature value is reported using a DataReady event of the Telemetry 
class. The code block from Listing E-3 also shows how to associate an event handler with the event.  
This is done within the MainPage constructor, where using the += operator I create the event handler 
of the DataReadyEventHandler delegate type. The statement looks very similar to its C# counterpart. 
However, to indicate the actual method that handles an event, you use the & operator. 



	 APPENDIX E  Visual C++ component extensions	 E-3

LISTING E-2  Starting and stopping telemetry

void MainPage::ButtonStartSensorReading_Click(Object^ sender, RoutedEventArgs^ e) 
{ 
	 telemetry->Start(); 
	 ViewModel->IsTelemetryActive = telemetry->IsActive; 
} 
 
void MainPage::ButtonStopSensorReading_Click(Object^ sender, RoutedEventArgs^ e) 
{ 
	 telemetry->Stop(); 
	 ViewModel->IsTelemetryActive = telemetry->IsActive; 
}

LISTING E-3  Event handling

MainPage::MainPage() 
{ 
    InitializeComponent(); 
    telemetry->DataReady += ref new DataReadyEventHandler(this, &MainPage::OnDataReady); 
} 
 
void MainPage::OnDataReady(Object^ sender, TelemetryEventArgs^ e) 
{ 
    if (Dispatcher->HasThreadAccess) 
    { 
        ViewModel->Temperature = e->Temperature; 
    } 
    else 
    { 
        Dispatcher->RunAsync(CoreDispatcherPriority::Normal,  
            ref new DispatchedHandler([=]() 
        { 
            MainPage::OnDataReady(sender, e); 
        })); 
    } 
}

In this example, an event is consumed in the OnDataReady method. As shown in Listing E-3, this 
method rewrites the temperature value to the corresponding property of ViewModel. Since ViewModel 
is bound to UI, it will automatically trigger a UI update, so I have to ensure that this operation would 
be thread-safe. I use the Dispatcher object, which is employed similarly as in C# projects. Only one 
aspect requires additional comments. That is the statement where I create DispatchedHandler. There I 
use a lambda expression (or simply lambda; https://bit.ly/cpp_lambda) with the capture clause [=]. This 
clause is used to capture variables from the scope surrounding the lambda expression to the lambda 
body. In that case, all variables will be captured by value. If you need to capture variables by reference, 
then you use [&] clause. You can also use specific capture types for particular variables. Simply write 
variable names within the capture clause, and precede them by & for reference capture. An empty 
clause [] will not capture any variables.



E-4		  APPENDIX E  Visual C++ component extensions

Event declaration and event arguments

The declaration of DataReadyEventHandler, which I used previously, is saved in the Telemetry header 
file. (See the companion code at Appendix E/TelemetryControl/Telemetry.h.) As shown in Listing E-4, 
DataReadyEventHandler contains the access modifier, delegate keyword, return type, and the list of 
formal arguments. Apart from the appearance of hats, the declaration looks exactly the same as in C#.

LISTING E-4  Delegate type declaration

public delegate void DataReadyEventHandler(Object^ sender, TelemetryEventArgs^ e);

DataReadyEventHandler has two arguments: sender and e. The first is used to pass the reference to 
an object, raising an event, while the latter stores the telemetry data. In this case, the sensor readings are 
wrapped in the TelemetryEventArgs class (see the companion code at Appendix E/TelemetryControl), 
whose declaration appears in Listing E-5.

LISTING E-5  Declaration of the TelemetryEventArgs class

public ref class TelemetryEventArgs sealed 
{ 
public: 
    TelemetryEventArgs(double temperature); 
 
    property double Temperature 
    { 
        public: double get() { return temperature; } 
        private: void set(double value) { temperature = value; } 
    } 
 
private: 
    double temperature; 
};

TelemetryEventArgs declares one private field, temperature, and one public property, Temperature. 
According to the property declaration, the Temperature member can be accessed publicly but modified 
privately. We see that in this case, C# syntax would be much more straightforward for accomplishing 
the same result and does not require you to declare additional private fields.

The constructor of TelemetryEventArgs, shown in Listing E-6, is used to set the Temperature 
property. I utilize this constructor in the Telemetry class to easily wrap the emulated temperature into 
an instance of the TelemetryEventArgs.



	 APPENDIX E  Visual C++ component extensions	 E-5

LISTING E-6  TelemetryEventArgs constructor

TelemetryEventArgs::TelemetryEventArgs(double temperature) 
{ 
    Temperature = temperature; 
}

Concurrency

To implement the background operation, I create the Telemetry class. As shown in Listing E-7, this class 
declares the DataReady event and the OnDataReady inline function that raises the event. This additional 
function is required because in C++/CX, you cannot directly raise an event in the class definition without 
writing custom raise logic (see https://bit.ly/cpp_cx_events). 

LISTING E-7  Declaration of the Telemetry class

ref class Telemetry sealed 
{ 
public: 
    event DataReadyEventHandler^ DataReady; 
 
    void OnDataReady(Object^ sender, TelemetryEventArgs^ e) 
    { 
        DataReady(this, e); 
    } 
 
    property bool IsActive 
    { 
        public: bool get() { return isActive; } 
        private: void set(bool value) { isActive = value; } 
    } 
 
    void Start(); 
    void Stop(); 
 
private: 
    const int msDelayTime = 1000; 
    bool isActive; 
 
    task<void> telemetryTask; 
    cancellation_token_source *telemetryCancellationTokenSource; 
 
    void InitializeTelemetryTask(); 
    TelemetryEventArgs^ GetSensorReading(); 
};



E-6		  APPENDIX E  Visual C++ component extensions

I declare the IsActive property, which is the flag indicating whether the background operation is  
in progress. I also have two public methods—Start and Stop—which are used to control the thread, in 
which I periodically emulate sensor readings at the delays specified by the msDelayTime constant. 

Going further, the Telemetry class declares two private fields: telemetryTask and telemetry-
CancellationTokenSource. They are of types task<T> and cancellation_token_source, respectively. 
Both types are parts of the Parallel Patterns Library (PPL; https://bit.ly/pp_lib). PPL provides the API that 
you can use to run concurrent operations within the Windows ThreadPool. Additionally, PPL implements 
generic concurrent algorithms (like parallel loops) and parallel containers.

I instantiate telemetryTask and telemetryCancellationTokenSource within Initialize- 
TelemetryTask, shown in Listing E-8. First, I create cancellation_token_source, which is used to 
cancel the task. Note that cancellation_token_source is not a managed type, and thus is declared 
as the pointer type and created with the new keyword. I instantiate the task class with void as a generic 
argument. The lambda used there retrieves the current class instance in the capture clause ([this]). 
The task method itself looks similar to the C# examples. Namely, I generate a sensor reading, and then 
report it to the listeners using an event. These operations are delayed in time using the Sleep function.

LISTING E-8  Telemetry task initialization

void Telemetry::InitializeTelemetryTask() 
{ 
    telemetryCancellationTokenSource = new cancellation_token_source(); 
 
    telemetryTask = task<void>([this] 
    { 
        auto cancellationToken = telemetryCancellationTokenSource->get_token(); 
 
        while (!cancellationToken.is_canceled()) 
        { 
            if (IsActive) 
            { 
                auto telemetryEventArgs = GetSensorReading(); 
 
                OnDataReady(this, telemetryEventArgs); 
 
                Sleep(msDelayTime); 
            } 
        } 
 
    }, telemetryCancellationTokenSource->get_token()); 
}

To emulate sensor readings, I write the GetSensorReading method, which appears in Listing E-9. To 
emulate temperature changes, GetSensorReading uses randomly generated values, which are added 
to the base temperature of 35 degrees Celsius.



	 APPENDIX E  Visual C++ component extensions	 E-7

LISTING E-9  Emulating temperature reading

TelemetryEventArgs^ Telemetry::GetSensorReading() 
{ 
    const double baseTemp = 35.0; 
    const double interval = 2.5; 
 
    auto temp = baseTemp + interval * rand() / double(RAND_MAX); 
 
    return ref new TelemetryEventArgs(temp); 
}

The telemetry is started by invoking the Start method, shown in Listing E-10. Note that, after 
initializing the task, I do not need to invoke any additional methods that explicitly run the concurrent 
operation. The task method from Listing E-8 is automatically queued on the ThreadPool and started. 
Therefore, I set the IsActive flag to true before invoking InitializeTelemetryTask.

LISTING E-10  Starting telemetry as the background operation

void Telemetry::Start() 
{ 
    if (!IsActive) 
    { 
        IsActive = true; 
 
        InitializeTelemetryTask(); 
    } 
}

The background operation is stopped using the method from Listing E-11. It sends the signal to the 
task using cancellation_token_source and sets IsActive flag to false. I also needed to manually 
release resources used by cancellation_token_source, because it was a pointer variable.

LISTING E-11  Telemetry is stopped by sending a cancellation signal to the task

void Telemetry::Stop() 
{ 
    if (IsActive) 
    { 
        telemetryCancellationTokenSource->cancel(); 
 
        IsActive = false; 
 
        delete telemetryCancellationTokenSource; 
        telemetryCancellationTokenSource = nullptr; 
    } 
}



E-8		  APPENDIX E  Visual C++ component extensions

Data binding

The last element of the SenseHat.Sensors.CppCx app that requires additional discussion is the way you 
bind properties of the view models to the UI. Again, the XAML declaration stays unchanged. However, 
there are some differences in the logic. The class implementing your view model has to be associated 
with Windows::UI::Xaml::Data::BindableAttribute. 

Here, my view model is implemented within the SensorsViewModel class. (See the companion code 
at Appendix E/ViewModels.) Its declaration appears in Listing E-12. As in C#, the SensorsViewModel 
class implements the INotifyPropertyChanged interface. Hence, SensorsViewModel declares the event 
PropertyChanged of type PropertyChangedEventHandler. This event is raised within the OnProperty- 
Changed method. Basically, this looks the same as in C#. However, in C++/CX, the CallerMemberName-
Attribute is unavailable, so you need to explicitly pass the property name to the OnPropertyChanged 
method. In particular, OnPropertyChanged is invoked in the setting of the Temperature and  
IsTelemetryActive properties. Whenever that happens, the data binding mechanism handles the 
PropertyChanged event to update the corresponding elements of the UI. The temperature value is 
displayed in the UI through the Temperature property, while IsTelemetryActive enables or disables 
Start Sensor Readings and Stop Sensor Readings buttons.

LISTING E-12  Declaration of the SensorsViewModel class

[Bindable] 
public ref class SensorsViewModel sealed : INotifyPropertyChanged 
{ 
public: 
    SensorsViewModel(); 
 
    virtual event PropertyChangedEventHandler^ PropertyChanged; 
 
    property double Temperature 
    { 
        double get() { return temperature; } 
        void set(double value) 
        { 
            temperature = value; 
            OnPropertyChanged("Temperature"); 
        } 
    } 
 
    property bool IsTelemetryActive 
    { 
        bool get() { return isTelemetryActive; } 
        void set(bool value) 
        { 
            isTelemetryActive = value; 
            OnPropertyChanged("IsTelemetryActive"); 
 
            ToggleStartStopButtons(!value); 
        } 



	 APPENDIX E  Visual C++ component extensions	 E-9

    } 
 
    property bool IsStartSensorReadingButtonEnabled 
    { 
        bool get() { return isStartSensorReadingButtonEnabled; } 
        private: void set(bool value) { isStartSensorReadingButtonEnabled = value; } 
    } 
 
    property bool IsStopSensorReadingButtonEnabled 
    { 
        bool get() { return isStopSensorReadingButtonEnabled; } 
        private: void set(bool value) { isStopSensorReadingButtonEnabled = value; } 
    } 
 
    private: 
        bool isTelemetryActive; 
        bool isStartSensorReadingButtonEnabled; 
        bool isStopSensorReadingButtonEnabled; 
 
        double temperature; 
 
        void ToggleStartStopButtons(bool isStartEnabled); 
        void OnPropertyChanged(String^ propertyName); 
        { 
            PropertyChanged(this, ref new PropertyChangedEventArgs(propertyName)); 
        } 
};

The definition of SensorsViewModel is shown in Listing E-13 and contains constructor and a Toggle- 
StartStopButtons method. The latter sets IsStartSensorReadingButtonEnabled and IsStop- 
SensorReadingButtonEnabled to reflect the current telemetry status in the UI. Hence, at startup, only 
the Start Sensor Readings button is enabled (see the constructor of SensorsViewModel in Listing E-13).

LISTING E-13  Definition of the SensorsViewModel class

SensorsViewModel::SensorsViewModel() 
{ 
	 ToggleStartStopButtons(true); 
} 
 
void SensorsViewModel::ToggleStartStopButtons(bool isStartEnabled) 
{ 
	 IsStartSensorReadingButtonEnabled = isStartEnabled; 
	 OnPropertyChanged("IsStartSensorReadingButtonEnabled"); 
 
	 IsStopSensorReadingButtonEnabled = !isStartEnabled; 
	 OnPropertyChanged("IsStopSensorReadingButtonEnabled"); 
}



E-10		  APPENDIX E  Visual C++ component extensions

Value converters
As in C#, you can also use value converters, which transform data transmitted through the data binding. 
Here, I implement such a converter to format temperature displayed in the UI. The declaration of 
TemperatureToStringConverter, which appears in Listing E-14, shows that the value converter class 
has to implement the IValueConverter interface. Hence, TemperatureToStringConverter has two 
methods: Convert and ConvertBack. Their meaning is the same as in previous C# samples.

LISTING E-14  Converter declaration

public ref class TemperatureToStringConverter sealed : IValueConverter 
{ 
public: 
    virtual Object ^Convert(Object ^value, TypeName targetType, Object ^parameter,  
        String ^language); 
    virtual Object ^ConvertBack(Object ^value, TypeName targetType, Object ^parameter,  
        String ^language); 
};

To perform an actual conversion and prepare the temperature string, I use standard C/C++ tech-
niques (see Listing E-15). First, I convert Object^ to double using the static_cast template construct. 
Then, I format the temperature and supplement it with a °C with the sprintf_s function. The result 
of this operation is written to the array of wchar_t (wide character type). Finally, I convert this array to 
String^ using a dedicated constructor of that class. This is another example proving how easily you 
can mix managed code with native code. You do pay a price in terms of time required to write the app 
logic (compared to C#).

LISTING E-15  Converter definition

Object ^TemperatureToStringConverter::Convert(Object ^value, TypeName targetType,  
    Object ^parameter, String ^language) 
{ 
    String^ result = "Unavailable"; 
 
    try 
    { 
        auto temperature = static_cast<double>(value); 
 
        wchar_t buffer[100]; 
        wchar_t degChar = (wchar_t)176; 
 
        swprintf_s(buffer, L"%.2f %cC", temperature, degChar); 
 
        result = ref new String(buffer);  
    } 
    catch (Exception^) {} 
 
    return result; 
} 
 



	 APPENDIX E  Visual C++ component extensions	 E-11

Object ^TemperatureToStringConverter::ConvertBack(Object ^value, TypeName targetType,  
    Object ^parameter, String ^language) 
{ 
    throw ref new NotImplementedException(); 
}

To use the converter, you need to declare it in the control, page, or app resources. Here, I declare 
TemperatureToStringConverter in the app resources, so I modify the App.xaml file as shown in  
Listing E-16. To make TemperatureToStringConverter “visible” in the app resources, I have to include 
the appropriate header file in App.xaml.h: 

#include "TemperatureToStringConverter.h"

LISTING E-16  Converter declaration in the application resources

<Application 
    x:Class="SenseHat_Sensors_CppCx.App" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:converters="using:SenseHat.Sensors.Converters" 
    RequestedTheme="Light"> 
 
    <Application.Resources> 
        <converters:TemperatureToStringConverter x:Key="TemperatureToStringConverter" /> 
    </Application.Resources> 
</Application>

Summary

In this appendix, I described features of C++/CX that you may find useful for implementing UWP IoT 
apps with C++/CX. The functionality developed here was dedicated to periodically reading data from 
sensors. Although I used emulated readings, you can quite easily replace the emulated values with the 
real data obtained from the Sense HAT add-on board.




